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Abstract

Flood disasters occur frequently and pose significant threats to human life and property,
making flood forecasting essential for disaster prevention and mitigation. This paper proposes a
probabilistic flood occurrence prediction model based on the extended Long Short-Term Memory
(xLSTM) network. Leveraging multi-source time-series data such as historical rainfall, flow rate,
and water level, the model captures temporal features associated with flood events and predicts
future flood risks in probabilistic terms. Empirical analysis on multiple benchmark flood datasets
demonstrates that the xLSTM model outperforms traditional models such as LSTM and GRU in
terms of prediction accuracy and generalization capability. The proposed approach shows strong
application potential and practical value, providing timely and accurate flood forecasts to support
effective flood risk management.
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1. Introduction

Amid escalating global climate change, flood disasters have exhibited a trend of nonlinear
intensification. A notable example is the compound flood event in June 2023, where 15 major
rivers in China simultaneously exceeded warning water levels, underscoring the limitations of
traditional hydrological models in forecasting extreme events (Panahi, et al, 2021). The field of
flood prediction currently faces a dual challenge: on one hand, conventional statistical models,
constrained by the Markov assumption, struggle to capture the intrinsic long-term dependencies
of hydrological systems; on the other hand, traditional machine learning approaches, such as
support vector machines, though adept at modeling nonlinear relationships, fall short in
effectively representing temporal dependencies within hydrological time series (Avand et al,
2022).
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As a special type of recurrent neural network, the Long Short-Term Memory network (LSTM)
can effectively handle the long-term dependence problems in time series data and has shown great
potential in the field of flood prediction (Chen et al, 2007). However, the traditional LSTM has
certain limitations in aspects such as storage decision-making, storage capacity, and
parallelization ability. In recent years, new variants such as xLSTM, mLSTM, and sLSTM have
emerged. xLSTM overcomes many limitations of the traditional LSTM through improvements
such as exponential gating, advanced memory structure, residual connections, and a parallelizable
architecture. mLSTM expands vector operations into matrix operations, significantly enhancing
the memory capacity and parallel processing ability (Zhou et al, 2022). sLSTM, on the other hand,
adds a scalar update mechanism to achieve fine-grained gating control. Although these new
models have achieved certain results in other fields, their application research in the direction of
flood prediction is still in its infancy. This paper aims to deeply explore the performance of
xLSTM, mLSTM, and sLSTM in flood prediction, provide more effective technical support for
the field of flood prediction, and contribute to enhancing the ability to defend against flood
disasters. Research findings have shown that the organic integration of deep learning methods and
traditional hydrological models represents an effective approach to enhancing the accuracy of
flood prediction under complex conditions. This integration holds significant practical
implications for the advancement of the construction of digital twin river basins (Yariyan et al,
2020).

2. Related Work

Flood probability forecasting is a pivotal research domain focused on enhancing the precision
and dependability of flood predictions, thereby informing effective flood management strategies.
Over the years, diverse methodologies have been developed, each offering unique insights and
techniques. Jörg Dietrich et al (2008) introduced an innovative approach that integrates
deterministic stage forecasts from support vector regression with a probability distribution of
forecast errors derived from fuzzy inference models. This method was validated through flash
flood events in the Lang-Yang River, demonstrating its practical applicability in real-time
scenarios. Stefan Laeger et al (2010) emphasized the integration of various ensemble prediction
systems to establish a robust flood management strategy. Their work highlighted the significance
of operational meteorological ensemble predictions in generating probabilistic hydrological
forecasts, applied to the extreme flood event. Robertson et al (2013) showcasing the efficacy of
ensemble techniques in enhancing forecasting accuracy. In operational flood forecasting, Jafar
Yazdi et al (2014) developed a framework to assist practitioners in selecting and implementing
suitable probabilistic forecasting techniques. Their work responded to the Pitt Review's
recommendations and showcased various successful probabilistic methods that could be
effectively operationalized. Ye et al (2016) contributed by proposing a novel method for
generating ensemble rainfall forecasts through post-processing numerical weather prediction
(NWP) models. This approach aimed to improve short-term streamflow forecasting, with future
work planned to assess its efficacy across diverse climatic conditions. Chenkai Cai et al (2019)
presented a stochastic framework utilizing Bayesian inference to evaluate the performance of
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flood warning systems based on rainfall-runoff modeling. Their methodology provided a means to
estimate uncertainty bands in model parameters, thereby enhancing forecast reliability. The
utilization of ensemble precipitation forecasts was further explored by Dinh Ty et al (2020)who
employed products from the TIGGE initiative to drive a distributed hydrologic model. This study
underscored the importance of ensemble forecasting in improving flood prediction capabilities.
Wenhua Wan et al (2021) advanced the understanding of uncertainty in precipitation forecasts by
proposing a model that integrates fuzzy probability and Bayesian theory. Their research assessed
forecasts from multiple global weather centers, providing valuable insights into precipitation
prediction reliability during flood seasons.

Existing flood probability forecasting methods, such as SVR, Bayesian inference, fuzzy logic,
and ensemble predictions, have shown effectiveness but generally suffer from limited feature
extraction capabilities, poor generalization, low real-time performance, and high dependency on
external meteorological models. In contrast, xLSTM offers enhanced temporal modeling and
automatic feature learning, enabling it to efficiently process complex, multi-source hydrological
data. It significantly improves prediction accuracy and robustness, while also providing strong
scalability and real-time applicability, demonstrating clear overall advantages.

3. Model Introduction

LSTM (Long Short-Term Memory Network) is an improved recurrent neural network with the
addition of a memory unit, which mainly consists of a cell state and a gating mechanism (Ning et
al, 2021). The cell state is responsible for preserving and transmitting historical information
during the processing of sequential data, and the gating mechanism is mainly responsible for
controlling the inflow, storage, and output of information to better capture long-distance
dependencies.

In the figure, represents the cell state (memory state) at time step , is the input information, is
the output value of the neural network unit at time step ,is the output value of the forget gate
structure at time step , is the output value of the input gate structure. at time step , is the output
value of the output gate structure at time step , denotes the sigmoid function, is the cell state at
time step t, is the output value of the neural network unit at time step . In order to prevent
excessive memory from affecting the neural network's processing of current inputs, we should
selectively forget some of the components in the previous unit states, while retaining others for
continued use at the current moment. The forgetting gate can determine how much information is
retained for the neural network memory cellsat time , By performing operations onand , and then
passing the result through the sigmoid function, the forget gate generates a vector with values
ranging from 0 to 1. A value of 0 in the vector corresponds to the information that needs to be
forgotten, while a value of 1 indicates the information that should be retained. The expression of
the forget gate is as follows:
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Figure 1. LSTM architecture

ft = σ(Wf ∙ ht−1, Xt + bf) (1)

In Equation (1),Wf represents the weight of the forget gate,bf is the bias term.And σ is the
sigmoid function. The input gate determines how much of the input information at time step t
should be retained in the current state of the neural network unit, effectively controlling the
information that needs to be updated at the current time step(Yuan et al, 2025). The input quantity
Xtand the output quantity ht−1through the input gate it.Then, by combining the input quantity Xt

and the output quantity ht−1 and passing them through a tanh function. Ct� a new control
parameter is created.The expressions of the input gate are as follows:

it = σ(Wi ∙ ht−1, Xt + bi) (2)

Ct� = tanh((Wc ∙ ht−1, Xt + bc) (3)

Ct = ft ∗ Ct−1 + it ∗ Ct� (4)

In Equation 4, the cell state Ct−1is updated as Ct,Wi is the weight of the input gate.The output
gateCt determines which information in the current cell state is output to ht , Xt andht−1 pass
through the output gate to determine the scope of the output information.Then, Then, by
combining with the partial memory information selected by the tanh function applied toCt, ht is
determined through the output gate, The expressions of the output gate are as follows:

ot = σ(Wo ∙ ht−1, Xt + bo) (5)

ht = ot ∗ tanh(Ct) (6)

In Equations (5) and (6),,Wo represents the weight of the output gate.

SLSTM is an improved version of LSTM. SLSTM introduces exponential gating,
normalization and standardization operations to enhance stability and performance (Tian et al,
2024). The exponential activation function enables the model to flexibly control the flow of
information during memory and forgetting. The standardized operation state sums the product of
the input gate and all subsequent forget gates to stabilize the numerical calculation during model
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training. In addition, SLSTM also supports multiple storage units and allows memory mixing
through recurrent connections, establishing a new memory mixing method (Lin et al, 2024).

In order to further increase the memory capacity, MLSTM changes the storage unit of LSTM
from scalar to matrix. This change increases the storage capacity and expression ability of the
model. In addition, MLSTM also introduces two innovations, parallelization capability and
covariance update. One of the defects of LSTM is that it relies on the sequential calculation of
time steps and cannot be parallelized. However, MSLTM achieves parallel training by eliminating
the hidden connections between time steps. Since the memory in mLSTM is expanded to matrix
form, the model is allowed to store multiple key-value pairs. In order to effectively manage and
update these key-value pairs, an update mechanism similar to the covariance matrix is introduced
to improve the retrieval ability of rare information (Lin et al, 2024).

XLSTM(Alharthi & Mahmood, 2024). integrates SLSTM and XLSTM into the residual block
structure to form an XLSTM block, which forms a more complex architecture through residual
stacking, similar to Transformer, further improving the scalability of the model.

4. Tataset and Experimental Analysis

4.1. Dataset Description

The dataset used in this study contains multiple variables related to geography, environment,
socioeconomic factors, and policy planning. The aim is to explore the impacts of these factors on
a specific target variable (such as hs_prediction). The dataset is organized in tabular form, with
each row representing an observation sample and each column representing a variable, covering
multiple dimensions of information, such as terrain (dixing), climate (qihou), forest coverage rate
(senlin), urbanization level (city), population (person), and relevant policies (zhengce). The
comprehensive consideration of these variables helps to comprehensively understand the change
trend of the target variable and its driving factors (Fu et al, 2016).

Before conducting in - depth analysis, necessary preprocessing operations were performed on
the dataset to ensure data quality and the effectiveness of the analysis. A preliminary inspection
revealed that there were some missing values in the dataset. Different strategies were adopted for
handling missing values according to the nature of the variables and the degree of missingness.
For variables with fewer missing values, they were filled using the mean or median value. For
variables with a large number of missing values and a significant impact on the analysis, after
considering their contribution to the overall data, they were carefully removed to avoid
introducing excessive bias.

In this study, we used the corr() method in the Pandas library to calculate these correlation
values. The corr() method is used to calculate the correlations between all columns in a
DataFrame and returns a correlation matrix. Here, we are only concerned with the correlations
with the flood probability column. The specific correlations of various influencing factors with it
are shown in Figure 2 below.
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Figure 2. Heat map of various parameters

As can be seen from Figure 2 above, policies have the closest correlation with the probability
of flood occurrence, followed by wetland loss, drainage systems, etc. The impact of monsoon
intensity and the coastline on the probability of flood occurrence is the smallest, with values of
only 0.036 and 0.048 respectively.

The Pearson correlation coefficient is a statistical indicator used to measure the strength and
direction of the linear relationship between two variables. Its value ranges from -1 to 1.
Specifically, 1 indicates a perfect positive correlation; -1 indicates a perfect negative correlation;
and 0 indicates no linear correlation.

4.2 Experimental Analysis

The development tool selected for this paper is PyCharm, with the programming language
Python 3.11.0. The Graphics Processing Unit (GPU) used is the NVIDIA GeForce GTX 4060,
and the Central Processing Unit (CPU) is the i7-13600H, with 6GB of video memory. The
experiment is based on a simulation-generated dataset for prediction, where the dataset is divided
into 80% training data and 20% testing data for offset prediction.

The dataset used in this experiment contains multiple flood-related features, such as terrain,
rivers, forest cover, urban development, climate, dam quality, and corresponding flood prediction
indicators (hs_prediction). The data was cleaned to remove missing values and outliers to ensure
data quality. In order to make the data meet the model input requirements, the features were
standardized and mapped to the [0, 1] interval. At the same time, the dataset was divided into
70% training set and 30% test set to evaluate the generalization ability of the model.

First, the LSTM model was selected: As the basic model, LSTM effectively solves the gradient
vanishing problem of traditional recurrent neural networks (RNNs) through a gating mechanism
and can learn long-term dependencies in time series. In this experiment, a model structure with 1
LSTM hidden layer and 1 fully connected output layer was built. SLSTM model: Based on LSTM,



Journal of Computer Science and Digital Technology, 2025, 1(1), 1-10
https://doi.org/10.71204/z0zqcs12

7

SLSTM increases the depth of the model by stacking multiple LSTM layers, thereby enhancing
the model's learning ability for complex data features. In the experiment, a 2-layer LSTM stacked
structure is constructed, and each layer can extract data features from different levels. MLSTM
model: MLSTM introduces multiplication operations to improve the gating mechanism of LSTM,
so that the model can more flexibly capture complex nonlinear relationships and feature
interactions in the data. Similarly, a model with 1 LSTM hidden layer with improved gating
mechanism and 1 fully connected output layer is constructed. XLSTM model: XLSTM improves
the processing ability of long sequence data by improving memory units and gating structure, and
is more suitable for capturing long-term dependency information. This experiment builds a model
with 1 XLSTM hidden layer and 1 fully connected output layer. All four models are trained using
the Adam optimizer to minimize the mean square error (MSE) loss function. During the training
process, the initial learning rate is set to 0.01, the batch size is 32, and the number of training
rounds is 100. That is, when the loss on the validation set no longer decreases within a certain
number of rounds, the training is stopped and the optimal model is saved.The comparison of the
experimental results of each model is shown in Figures 3 and 4 below.

Figure 3. LSTM and mLSTM model prediction result diagram

Figure 4. sLSTM and xLSTM model prediction result diagram

The mean square error (MSE) and mean absolute error (MAE) of the predicted value and the
true value of the experimental results are analyzed, and it can be seen that the model has certain
reliability and fit. The mean square error (MSE) and mean absolute error (MAE) of the model are
shown in Table 1.
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Table1. MSE, MAE and ��comparison table

Model MAE MSE R2

LSTM 0.0799 0.0124 0.0508

SLSTM 0.0530 0.0044 0.9003

MLSTM 0.0535 0.0045 0.9127

XLSTM 0.0511 0.0044 0.9307

5. Conclusions

This study focuses on the temporal characteristics of flood events and proposes a probabilistic
prediction approach based on the xLSTM model. By enhancing the traditional LSTM structure
with an improved gating mechanism, xLSTM more effectively models complex hydrological
time-series data and improves prediction performance. Experimental results indicate that xLSTM
achieves superior performance across various evaluation metrics and maintains high stability and
accuracy even under complex and dynamic hydrological conditions. Future work may incorporate
additional data sources, such as remote sensing and atmospheric information, to further enrich the
model's input features. Moreover, integrating the proposed model into real-time early warning
systems could significantly enhance its practical utility in flood risk mitigation.
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